Saturation Probabilities of Continuous-Time Sigmoidal Networks

نویسندگان

  • Randall D. Beer
  • Bryan Daniels
چکیده

From genetic regulatory networks to nervous systems, the interactions between elements in biological networks often take a sigmoidal or S-shaped form. This paper develops a probabilistic characterization of the parameter space of continuous-time sigmoidal networks (CTSNs), a simple but dynamically-universal model of such interactions. We describe an efficient and accurate method for calculating the probability of observing effectively M-dimensional dynamics in an N-element CTSN, as well as a closed-form but approximate method. We then study the dependence of this probability on N, M, and the parameter ranges over which sampling occurs. This analysis provides insight into the overall structure of CTSN parameter space. Please address all correspondence to: Randall D. Beer Phone: (812) 856-0873 Cognitive Science Program Fax: (812) 855-1086 1910 E. 10 th St. – 840 Eigenmann Email: [email protected] Indiana University URL: http://mypage.iu.edu/~rdbeer/ Bloomington, IN 47406

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lower Bounds on the Complexity of Approximating Continuous Functions by Sigmoidal Neural Networks

We calculate lower bounds on the size of sigmoidal neural networks that approximate continuous functions. In particular, we show that for the approximation of polynomials the network size has to grow as O((logk)1/4) where k is the degree of the polynomials. This bound is valid for any input dimension, i.e. independently of the number of variables. The result is obtained by introducing a new met...

متن کامل

An analysis of premature saturation in back propagation learning

-The back propagation (BP) algorithm is widely used for finding optimum weights of multilayer neural networks in many pattern recognition applications. However, the critical drawbacks of the algorithm are its slow learning speed and convergence to local minima. One of the major reasons for these drawbacks is the "premature saturation'" which is a plwnomenon that the error of the neural network ...

متن کامل

Approximation by Superpositions of a Sigmoidal Function*

Abstr,,ct. In this paper we demonstrate that finite linear combinations of compositions of a fixed, univariate function and a set ofaffine functionals can uniformly approximate any continuous function of n real variables with support in the unit hypercube; only mild conditions are imposed on the univariate function. Our results settle an open question about representability in the class of sing...

متن کامل

Approximation by Superpositions of a Sigmoidal Function*

Abstr,,ct. In this paper we demonstrate that finite linear combinations of compositions of a fixed, univariate function and a set ofaffine functionals can uniformly approximate any continuous function of n real variables with support in the unit hypercube; only mild conditions are imposed on the univariate function. Our results settle an open question about representability in the class of sing...

متن کامل

Approximation by Superpositions of a Sigmoidal Function*

Abstr,,ct. In this paper we demonstrate that finite linear combinations of compositions of a fixed, univariate function and a set ofaffine functionals can uniformly approximate any continuous function of n real variables with support in the unit hypercube; only mild conditions are imposed on the univariate function. Our results settle an open question about representability in the class of sing...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009